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Comparable Confidence Intervals for Multi-sample and Repication Studies

Abstract

When the same parameters are estimated by data from several independent samples, it may

happen that, for any pair of samples, even though the test for parameter discrepancy is

statistically significant, the two individual confidence intervals overlap. To overcome this

potential contradiction, a new type of one-sample confidence intervals is developed. Their

evaluation will lead to the same statistical decisions reached by the two-sample test for

parameter discrepancy. Moreover, the simultaneous decisions on parameter estimation,

statistical inference and directional prediction can be made with specified confidence

coefficients and error rates by simply comparing a pair of comparable confidence intervals.

Contrasting to the corresponding conventional confidence intervals, the comparable confidence

intervals have narrower widths, disjoint or overlap depending on whether the parameter

discrepancy is statistically significant or not. The proposed procedure can be applied to both

simple and multiple a-priori comparisons of means, proportions and correlation coefficients.

Due to its mathematical simplicity, the method should be valuable for research practitioners

and quite suitable to be taught in courses of research methods in the behavioral and social

sciences.
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Comparable Confidence Intervals for Multi-sample and Repication Studies

There are several circumstances in which the comparison of individual confidence

intervals (for 4, i = = 1, 2, ..., k) across a series of independent samples is needed. The

comparison may be conducted jointly with the evaluation of the associated significance tests

(n3: 4 = 00, i = 1, 2, ..., k) or confidence intervals of the parameter discrepancy (8, where 5

= (1), i = 1, 2, ..., k). First, the comparison of confidence intervals of the true

parameter, associated with the same hypotheses but obtained under various research

conditions (e.g., with different sample sizes and sample variances in multi-sample studies)

will help identifying not only the statistically significant results but possibly also the

practically, or clinically, important hypothetical conjectures. Usually such comparisons can be

performed by means of simple bar or line graphs. For example, the graph contains confidence

intervals drawn horizontally one on top of another and a vertical line representing the

hypothetical value of the parameter. The confidence interval that is away furthest from the

vertical line in the predicted direction may be chosen to indicate the range of both statistically

and clinically significant effect (Borenstein, 1994). Secondly, sometimes confidence intervals

may be more informative than statistical tests in the evaluation and comparison of the

statistical results. For example, a student's performance in a national standards test of

Mathematics is deemed unsatisfactory. One would reach such a conclusion more convincingly

if it can be shown that the two confidence intervals for the individual and national true means

are separable, namely, even the upper bound of the former falls below the lower bound of the

latter. Clearly, for this type of single-subject analysis, visual methods such as the comparison
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of confidence intervals are as necessary as, if not more meaningful than, the p-value or an

index of the statistical power of the test. Thirdly, if the research objective is to estimate the

typical range of the parameter of interest on the basis of multi-sample studies then confidence

intervals of the parameter discrepancy may not be relevant. One comparing individual

intervals for the parameter itself will identify the extent of sampling fluctuations and, as a

result, obtain a more precise estimate of the true parameter range. This is especially fitting if

estimates of the parameter discrepancy are found statistically significant. Hsu (1994) gives the

following example, "two data sets may give rise to the two confidence intervals E 1 + 0.2

months and pt, E 10 + 2 months, which convey very different information about ji, yet the

same p-value associated with H 0" (p. 4), where H.0: p, = 0. Note that the test of means

difference and the two individual mean tests may be all statistically significant (possibly at

approximately the same p values), but the two individual confidence intervals have very

different widths. Depending on the units of measurement and what the parameter (p)

represents, the researcher would prefer one but not the other confidence interval for the

estimate of the parameter range. Considerations as such are often overlooked if one computes

only the test of means difference'. Moreover, the computation of the significance test is not

necessary if one wants to estimate the p-value of the test statistic and the power of the test. It

will be shown that, given the information of a confidence interval, it is possible to recover the

p-value of the associated test statistic, and the power of the test is the same as the power of

the confidence interval. Last but not least, the confidence interval can be used to identify the

directions of the parameter and the parameter discrepancy. For the test of I-1.0: 4 = 0, if the

confidence interval for 10, is entirely to the left of 0 then 0; < 0 whereas if it is completely to

the right of 0 then (1); > 0. Following the procedures of two-tailed directional tests (Kaiser,

5
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1960; Shaffer, 1972; and Leventhal and Huynh, 1996a , 1996b), one can compute the risk of

making directional decisions (Type III error rate).

But how can confidence intervals computed for different samples be compared? It has

been recognized that, within each sample, the same statistical decision can be reached by

either conducting a statistical test (e.g., an evaluation of the kvalue of the test statistic) or by

examining if the hypothetical value of the parameter falls within the corresponding confidence

limits. The match between statistical tests and confidence intervals for statistical inference is

desirable and plays a major role for advocating the use of confidence intervals (Natrella,

1960). However, the comparison of the individual confidence intervals obtained for the single

parameters, say means, may or may not reproduce the same statistical decisions on the

statistical significance of means difference across different samples. This is because, for any

pair of means, the tests for individual means and means discrepancy are based on different

estimates of the standard errors, and on t statistics with different degrees of freedom if the

population variances are unknown.

There is a growing interest in confidence intervals among applied researchers2. It is

expected that confidence intervals will be the standard method for statistical inference in

social and behavioral sciences. Although statistical decisions based on post-hoc multiple

comparisons of confidence intervals for the means have been discussed, there is still a need

for a systematic study on the procedures and conditions for comparing confidence intervals

associated with pre-planned tests of means, proportions and correlations3. But the methods for

evaluating confidence intervals are lacking. It is the purpose of this paper to fulfill this need.

Moreover, it will be argued that the statistical decisions based on comparable confidence

intervals will satisfy the golden rule of equivalent outcomes between hypothesis testing and

6
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confidence interval evaluation, a hurdle that prevents the comparison of the conventional

confidence intervals unless very stringent conditions are met (e.g., same sample sizes and

population variances). The methods to compute and evaluate comparable confidence intervals

will be discussed in the first three sections. Readers unconcerned with the methodological

development but want a quick overview of the utility of the proposed procedures may be

benefitted by reading the examples at the end of these sections before moving to the bulk of

the article. Some related issues in the application of the proposed procedure and general

conclusions will be drawn in the final section.

Background of the Study

The Problem

In the following discussion, all tests are two-tailed, evaluated at a, or the nominal

significance level, so that a/2 is the size of each tailed critical region. Consider k independent

populations characterized by the parameters 4);, i = 1, k, for k > 2, where I) may denote

the mean (m), proportion (n) or correlation coefficient (p). The development of the proposed

method is based on the following "equivalency principle":

If Ho: (1); = 4 is rejected at a in favor of HA: 11:1i 4),, for any i = 1, k,

then the individual 100(1 a)% two-tailed confidence intervals for Ho: = 410

and Ho: = (I)o, where 00 be a hypothetical value of 4), should be separable, or

nonoverlapping. On the other hand, if Ho: 4), = 4);, is conceded then the

individual confidence intervals for 4)i, i = 1, k conducted at the same

level of a, overlap. Two confidence intervals are said to overlap if the upper

(lower) bound of the confidence interval for the smaller (larger) parameter
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estimate is located inside the confidence interval for the larger (smaller)

parameter estimate. Otherwise, the confidence intervals are considered

separable.

For simplicity, the following discussion is based on the tests of means in two-sample

studies under the assumption of variance homogeneity (a2; = o-2, i = 1, 2). Let M. be the

sample mean of the ith independent population with the corresponding sample size n., i = 1,

2, not necessarily equal. The 100(1 - a)% two-tailed individual confidence intervals for

testing Ho,: pi = [to (i. = 1, 2) are computed by the conventional method as

(1) M + Z1 a/2SE,, i = 1, 2,

(two one-sample confidence intervals), where SE = i = 1, 2 and ZI. an = the (1

a/2)th quantile of the standard normal distribution (such that Zan = Z1-w2). Without loss of

generality, assuming M1 > n. The corresponding confidence interval associated with the test

of E04: pi p2 = 0 is

(2) gd: (M1 M2) + Z1. al2SEd,

(a two-sample confidence interval), where S_Ed = 0-4{(l/n1) + (1/n2)}. The subscript d

represents the fact that the means difference is being assessed. If the confidence interval CI

does not contain the value of zero then the null hypothesis ilo,d is rejected at the

predetermined significance level a for two-tailed test. Otherwise, if fI4 does not contain zero,

one fails to reject the null hypothesis 11_04.

It is possible that the two within-sample confidence intervals overlap even though the

between-sample test for the parameter discrepancy is statistically significant at a. The
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question of interest is how the individual confidence intervals in Equation 1 be compared so

that the same statistical decision obtained for Hp, can be reached according to the

"equivalency principle" stated above.

A Solution

Let CI u, and CI, L, i = 1, 2, denote the upper and lower bounds of the individual

confidence intervals, respectively, and Ei, i = 1, 2, be any small, positive constant. Since MI >

M2, CII,u lies to the right of LI2 u. If Ijo,d is rejected at a/2 then the lower bound of CI1 is at

least equal to the smaller mean (M2) so that MI - Z1_ ancrAin, = M2 el, or

(3) (M1 M2) Zi - anG/4111 = et,

and the upper bound of CI, is at most equal to the larger mean (I) so that M2 + Zi w2aNT.12

= Mi E/, or

(4) zl_cyncyNn2 =

Conditions (3) and (4) imply that when the test of means difference is statistically significant,

the lower bound of the 100(1 a)% confidence interval computed from the individual

samples should be

,L: 21 Z1 - cd2a{(1/4n.) + (1/4112)}.

The subscript c stands for the correction on the conventional one-sample confidence intervals.

By symmetry, it is easy to write the equation for its upper bound. In other words, if the

difference of the two individual confidence intervals in Equation 1 is computed, the resulting

100(1 a)% two-tailed confidence interval for the means difference would be specified as
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(5) CI : M2) + i coac,

where SE = SE1 + SE2 = a{(1/Nini) + (1t6.2)}. The width of the confidence interval in

Equation 5 is larger than that in Equation 2 since {(1Ain1) + (1/Nin2)} > 4{(1/n1) + (1/112)} for

any positive constant n., i = 1, 2. This explains why the "equivalence principle" can be

violated. To prevent this possibility, a modification of SE., i = 1, 2, that renders the equality

SE = SE must be found. As a solution, the critical values in Equation 1 is set to be Z =

c where c is the correction factor of the form

(6) cJ=
SE Nifni +n2)

SE 4n, + 4E2

implying cf. < 1. Upon replacing Z1_ cd2 by Zi in Equation 1, the conventional confidence

intervals are revised to yield the following comparable confidence intervals

(7) CI* M + Z SE*i 1

where SE*; = c.E for i = 1, 2. Clearly, the width of Cr; is narrower than that of CI, for i =

1, 2, respectively. To recapitulate, if the means difference is statistically significant at a/2

then the comparable confidence intervals in Equation 7 are separable. This can be

accomplished even if the two 100(1- a)% two-tailed confidence intervals in Equation 1

overlap.

An Alternative Solution

For the purpose of preserving the "equivalency principle", instead of adjusting the

standard error of the estimates in computing SE*, i = 1, 2, as above, one can modify the

nominal significance level and revise the confidence coefficient of the conventional intervals
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accordingly. The formula for computing a Type I probability corresponding to a 100(1 - a)%

conventional confidence interval is given by

(8) a = 2[1 O(ZI - cd2)],

where 413(2.0 = Pra < = the probability of obtaining a standard normal value x = the area

under the standard normal curve to the left of the point x. Therefore, the adjusted or

comparative Type I error (a'), corresponding to the nominal level (a), can be derived as

(9) = 2[1 c1:1(tZ1- an)].

This enables the computation of comparative confidence intervals, defined as the 100(1 -

a')% two-tailed conventional confidence interval of the form

(10) CI' i M + Z SE_ ce/2--i

Since (I3( an) > irD(CiZi an), a is smaller than a', implying that Zi_ cen < Z1 an, the length

of the 100(1 - a')% comparative confidence interval (2'1) is narrower than that of the

100(1 a)% conventional confidence interval (a) for i = 1, 2, respectively.

Example 1

Consider two independent samples drawn from a population having a known standard

deviation of a = 10, the first sample with n1 = 36, MI = 25.5 and the second sample with 112

= 25 and M = 20. The 95% two-tailed individual confidence intervals for testing 1:10,: =

(i = 1, 2), for any value of Po, are given by the standard method as CII = 25.5 + (1.96)(10/6)

= (22.23, 28.77) and 22 = 20 + (1.96)(10/5) = (16.08, 23.92). These two conventional

11
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confidence intervals overlap from 22.23 to 23.92, or about 26% of the confidence interval for

p, and 22% of the confidence interval for p2. However, the test of means difference (zo: =

112) is statistically significant at a = .05 (two-tailed) since its 95% two-tailed confidence

interval is equal to gd = (25.5 20) + (1.96)(10)4{(1/36) + (1125)1 = (0.40, 10.60). The

required correction factor is computed as cf = 4{36 + 25}/(436 + 425) = 0.71. Hence, the

corresponding comparable confidence intervals are CI, = 25.5 + (1.96)(0.71)(10/6) = (23.18,

27.82) and g2 = 20 + (1.96)(.71)(10/5) = (17.22, 22.78). As expected, the 95% two-tailed

comparable confidence intervals are separable. The comparative Type I error is a' = 2[1

= 2[1 0.91798] = 0.164 and the comparative confidence intervals are CI', =

(24.34, 26.66) and CI'2 = (18.61, 21.40). Therefore, the following three statistical decisions

can be made for the given data: (i) the conventional 83.6% two-tailed confidence intervals for

testing g = P0 (i = 1, 2) are disjointed, (ii) the 95% two-tailed comparable confidence

intervals are separable, and (iii) the test of means difference (I-104: g, = g2) is statistically

significant at a = .05 (two-tailed)4.

Comments

Although the evaluation of CI*, and CI', would yield outcomes that satisfy the

"equivalency principle" in statistical decisions, the two types of statistical intervals are not

identical. It is recommended that the comparable confidence intervals be used at the expense

of the comparative confidence intervals for a-prior pairwise comparisons. First of all, because

CI','s are computed on the basis of both the correction factor cf and comparative significance

level a' as shown in Equation 9, they may be overadjusted for the statistical significance of

the between-sample test. Moreover, since a must be set in advance, it is more natural to

compute the comparable confidence intervals with the (1 a) coefficient than the comparative
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confidence intervals with a corrected coefficient (1 a').

The significance of the test statistic is measured by its kvalue. Since the kvalue is

the Type I error probability computed on the basis of sample data, its formula is the same as

Equation 8 upon replacing Z1_ cd2 by the test statistic itself (Welsh, 1996). Let ap denote the

kvalue for the test of means difference. It can be computed as

a = 2[1 - (1)

where SE4 = cr\i{ (1/n1) + (1/n2)}. The 100(1 ap)% conventional confidence interval contains

the value of 0 as its lower bound for MI > M2 (or its upper bound if MI < M,). It may be

called the significant confidence interval for estimating the parameter discrepancy and is

computed as

Cis: (M1 + Z1 - apaEd = (0, 2CM1

since Z1_ = IMI - M21 for MI > M2. Although the kvalue of the test statistic is generally

meaningful, for the simultaneous evaluation of H, and the significant confidence interval

may not be relevant and will not be discussed further in this paper4.

Using Comparable Confidence Intervals for

Parameter Estimation and Hypothesis Testing in Two-sample Studies

In the following, a procedure for two-sample tests of means, proportions and

correlation coefficients will be discussed in the context of a simultaneous assessment of

within-sample and between-sample tests of the same population parameter. The discussion

will be carried out for three popular types of two-tailed tests: (i) nondirectional tests evaluated

at a/2, (ii) nondirectional tests with unequal allocation of Type I error rates, and (iii)

nondirectional within-sample tests and a directional between-sample test, all are evaluated at a/2.

13
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Nondirectional Two-Tailed Tests with Symmetric Critical Regions

Procedure

Suppose the researcher wants to estimate the range of each 6,, i = 1, 2, and

simultaneously, to test the difference between 61 and 02. For these purposes, in the following

procedure, it suffices to evaluate only the one-sample comparable confidence intervals. The

testing procedure consists of the following steps:

(a) Specifying the hypotheses:

(Within-sample tests): Lk,: 4, = 4)0 vs. HA: 60, i = 1, 2; where 60 can be any

value of interest.

(Between-sample test): Ho, 6 26 = 0 vs. HA,
I 12 O.

(b) Computing the 100(1 a)% two-tailed comparable confidence intervals (Q*,):

CI*,: + CV1_ i = 1, 2,

where SE*, = sSE , CV is the critical value of the test statistic and if), represents the sample

estimate of 4),.

(c) Making two statistical decisions at the same significance level of a/2:

(i) Reject Ho,, if the comparable confidence interval Cr, does not contain 60 and

decide that 4), is probably not equal to 60. Otherwise, concede Ho i = 1, 2 and assume that 6,

is equal to 00.

(ii) Reject Ho,d if the comparable confidence intervals CI*, and Cr2 are disjointed and

decide that the difference in the two estimates of 6, and 62 are statistically significant.

Otherwise, concede H i = 1, 2, and assume that the difference in the two parameter

14
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estimates are not statistically significant.

For the two-sample tests of means, proportions and correlation coefficients, the general

form of the correction is found to be

q{a + b}
Et- =

\ia + ib

where a and b are functions of variances and/or the number of cases. The results are

summarized in Table 1 and their derivations are given in the Appendix.

Insert Table 1 about here

Equation 11 can be simplified to be cj = { 1 + r}/(1 + NO where r = a/b, the values

of a and b can be defined such that a > b and r > 1. Since r represents the ratio of sample

variances and/or cases, its values would likely be from 1 to 10 in most practical research

situations. In these circumstances, the range of cf would be from .71 (when r =1) to .80 (when

r = 10). Table 2 provides the comparative confidence coefficients (1 - a') for the

conventional confidence intervals corresponding to the comparable confidence intervals

computed with the nominal a levels for Z and t tests under the assumption of variance

homogeneity. For example, if 13.04 is statistically significant then, given a correction factor of

.70 from a Z distribution, both the 95% comparable confidence interval and the 83%

conventional confidence interval have separable limits. Given a correction factor of .76, if RD,d

is statistically significant then an 80% conventional (or comparative) confidence interval and

the 90% comparable confidence intervals for the t test with 10 degrees of freedom have

disjointed confidence bounds.

15
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Insert Table 2 about here

Example 2

Two samples are drawn randomly from a population having unknown variance (with

n1 = 31, M1 = 28 and S21 = 144; and E2 = 16, M2 = 20 and 522 = 62, respectively). Suppose

the test of variance homogeneity (O'Brien, 1981) is statistically significant at a = .05 (This is

the Case ld in the Appendix). The 95% two-tailed individual confidence intervals for testing

t1 = [to U = 1, 2), for any value of [to, are given by the standard method as CI, = (23.60,

32.40) and a = (15.80, 24.20). The overlap from 23.60 to 24.20 represents nearly 7% of the

interval length of either CI, or 02. However, the test of means difference (Im: = 1_12) is

statistically significant at a = .05 (two-tailed) according to the 95% two-tailed confidence

interval for the mean discrepancy (8) = (2.11, 13.89). In computing gd, for r = 42.20

(the degree of freedom according to Satterwaite-Welch approximation for t tests), the critical

value of ipp cd2 is found to be 2.02 (say, by using the command TINV(.025, 42.20) in the

SAS computer program, SAS Institute Inc., 1990). The required correction factor is cf = 0.71

and the adjusted within-sample standard errors are SE*, = 1.53 and S E*2 = 1.39. Hence, the

corresponding comparable confidence intervals are CI*, = (24.88, 31.12) and CI*2 = (17.03,

22.97). As expected, the 95% two-tailed comparable confidence intervals are separable. The

comparative Type I error rate is a' = 2[1 l'f*((.71)(2.018))] = 2[1 0.920] = 0.16 and the

associated comparative confidence intervals are also disjointed, being CI', = (25.83, 30.17)

and CI'2 = (17.98, 22.02).
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Nondirectional Two-Tailed Tests with Asymmetric Critical Regions

Procedure

Suppose the researcher wants to test the difference between 4 1 and 4)2 and to estimate

the range of 0; at different confidence coefficients, say (1 al) and (1 - a2). The relevant

hypotheses are specified below.

(Within-sample tests):

=4:1)0 vs. HA: 431 # 00, evaluated at a1/2,

11)i = 00 VS. IL: 4 1 00, evaluated at a2/2,

(Between-sample test): Ho, :d 4)1 4)2 = 0 VS. LIA,d: 11:11 402 0, evaluated at F/2.

In this case, the significance levels of al and a2 are predetermined but r is a function

of al and a2. We now show how a value of F can be determined. Following the same

argument leading to Equation 5, the resulting confidence interval for the parameter difference

is of the form

(12) gc: ($1 4)2) + z1-172, = ((1)i (1)2) +

where Q = al/A2 + ZI_ a2,24n1INN, N = ni + 11.2. Hence, the required Type I error rate

for the between-sample test becomes

(13) r = 2[1 - 413(Q)]

where the function (13(x) has been defined previously. From equation 13, .Q is the inverse

17
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function of the standard normal distribution evaluated at (1 i..e, Q = - I-72) = Z1

rn. The corresponding comparable confidence intervals are given by

(14) Cf 4), +
I

raSE*, = + OSE*1,

where SE*, = csSE , for i = 1, 2, are the same as derived for symmetric confidence intervals.

Alternatively, for these sample sizes, by declaring significance whenever a 100(1

a1)% conventional confidence interval for [II does not overlap a 100(1 a2)% confidence

interval for 112, one decides that the two-sample test of 1.11 [12 is statistically significant at F/2.

Otherwise, by declaring these two one-sample confidence intervals overlap, one concedes the

null hypothesis of 1.11 112 at I72. The comparative Type I error rate and the related

comparative confidence intervals are

and,

respectively.

a' = 2[1

CI' M. + Z SE_

Example 3

For the data in Example 1, the correction factor is computed to be E f = .071. Suppose

al = .05 and a2 = .10 then Q = R1.96)425 + (1.645)436}/4{36 + 25} = 2.52 and r = 2[1

0(2.52)] = 2(1 - .994) = .012. The 98.8% two-tailed confidence interval for the difference

scores is gd: (25.5 - 20) + (2.52)(10)A1{(1/36) + (1/25)) = (-1.06, 12.06), implying that the

means difference is not statistically significant. As expected, the 95% two-tailed comparable

confidence intervals for the two samples, namely Cr,: 25.5 + (2.52)(0.71)(10/6) = (22.52,

18
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28.48) and CI*2: 20 + (2.52)(0.71)(10/5) = (16.42, 23.58), respectively, are not separable.

Comments

The symmetric tests in the previous section can be considered as a special case of the

asymmetric tests in which a = al = a2. For the asymmetric case, the two within-sample tests

would have unequal statistical powers with respect to the alternative hypotheses that are

equivalent in magnitude. This might be desirable if the likelihood to detect the hypothetical

value (00) in one sample is greater than in the other.

Directional Comparable Confidence Intervals

To this point, the individual comparable confidence intervals are used to assess the

within-sample and between-sample tests simultaneously. These testing procedures are

nondirectional since they do not provide the answers to, say, the following questions: "Which

of 4); (j = 1, 2, ..., k) is better? What would be the risk in making such a selection?". A

procedure developed by Kaiser (1960) and modified by Shaffer (1972) and Leventhal and

Huynh (1996) can be used to address this problem. With the introduction of the directional

hypotheses for the two-tailed test of means difference, the one-sample comparable confidence

intervals can be used yet for another purpose, namely, to predict the direction of the

parameter difference. An important concept in evaluating directional hypotheses is the Type

III error rate (y) or "the risk of getting the direction wrong upon the rejection of the null

hypothesis". It constitutes a component in the formula for the statistical power,

Corrected Power: n(p)* = 1 - y,
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where 13 and y are the probabilities of making a Type II error and Type III error,

respectively. Computationally, the Type III error rate is represented by the tailed area opposite

to the predicted direction under the distribution of the alternative hypothesis. Consider the

two-sample test of means discrepancy (8 = pi p2). Without loss of generality, suppose 8 >

0. Let = Zi_an 8A/SE and Z1 = ( + 8A/SE), where 8A is the assumed value of the

mean difference under the alternative hypothesis; and Zi represent the right and left limits

of the central range (or region of accepting the null hypothesis) but computed under the

alternative hypothesis, respectively. For the nondirectional two-tailed test using the Z statistic,

the conventional power is defined as

Conventional Power: n(p) = 1 13 = 1 + (I)(Zi) cI3g2),

(De Groot, 1975, pp. 404-405; Zehna, 1970, p. 447). Hence, 13 = 43(Z2) (I)(Zi) and y =

so that

n(p)* = n(p) y = 1

One may wish to know that the Type III error is always less than a/2 (Kaiser, 1960, p. 164;

Leventhal and Huynh, 1996a, p.284)5.

Procedure

(a) Specifying the hypotheses:

The within-sample tests remain the same but the between-sample tests are based on

three sets of hypotheses:

(Within-sample tests): L1: 4), = 00 vs. 00, i = 1, 2; where 00 can be any

value of interest.

(Between-sample test): IL,: 4 2 <o lid2: 4)1 4)2

2 0

= 0 (null hypothesis), and Ho:
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> 0

(c) Computing the 100(1 a)% two-tailed comparable confidence interval (CO (same

as under the nondirectional procedure with a/2)

(b) Making two statistical decisions at the significance level of a/2. The first decision

(i) remains unchanged. The second decision is modified as follows:

(ii) If the comparable confidence intervals CI*, and CI*2 are disjointed, reject Hd2 in

favor of MI if 431 < 43,2 (or reject Ha in favor of Lid3 if ili, > (1)2, where is the sample

estimate of cli i = 1, 2) with a Type III error rate (y) less than a/2. Otherwise, if CI*, and

cr2 overlap, concede lio i = 1, 2, and assume that the difference in the two parameter

estimates are not statistically significant.

Suppose the null hypothesis (L112) of the between-sample test is evaluated at a, where

a = the probability that at least one of the alternative will be rejected, given that the null

hypothesi is true (called "the overall significance level" by Shaffer, 1972, p. 196; and

Leventhal and Huynh, 1996a, p.279). Then, the one-tailed tests Ed! and Hd2 should be

conducted at a/2 (or their 100(1 - a)% conventional confidence intervals be evaluated). Since

only one of the one-tailed test can be statistically significant at a/2, if any, the researcher can

decide whether 4), is less than, more than, or equal to 4)2 according to whether Edo or E12, or

neither, is statistically significant at a/2. As stated above, the probability of making a mistake

in deciding the direction is called Type III error (.< a/2). Besides these changes, the

computation of the one-sample conventional confidence intervals, correction factor,

comparable confidence intervals, comparative error rates and comparative confidence intervals

follow the same formulas derived for the nondirectional tests.
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Example 4

Recall that in Example 1 the test of means difference (112: (1), 4)2 = 0) is significant

at a, = .05 (two-tailed). Had the hypotheses lid!: (I)2 < 0 and LI/3: 4 > 0 been

evaluated, the resulting 97.5% one-tailed confidence intervals are

(p, p2) E 00, 10.60), and gd3:(11 p2) e (0.40,

Since the confidence interval of go does not contain zero, one decides at W2 that H is

rejected in favor of 113, implying that pi > p2 Actually, all of these computations are

unnecessary. Since the comparable confidence intervals of CI1 = (23.18, 27.82) and Cl2 =

(17.22, 22.78) are separable, and since M 1 > M2, one can decide immediately that pl is

significantly larger than p2 at a/2 and this conclusion is made with a Type III error

probability less than 2.5%. Suppose the effect size SA = 3 and since SE = 10 f(1/36) +

(1/25)1 = 2.603, we have Z2 = 1.96 - (3/2.603) = .807, Z1 = (1.96 + (3/2.603)) = 3.112 so

that cro(.1) = (13(-3.112) = .000927, 013(_2) = (10(.807) = .7903 and

ic(6) = 1 .7903 + .000927 = 0.21063,

n(5)* = 7c(6) y = 0.21063 - .00927 = .2097.

Hence, the estimate of Type III error rate is about .93%.

and

Comments

In this procedure, both the two within-sample tests (ap, i = 1, 2) and the one-tailed

tests for mean discrepancy (Ho, i = 1, 2) can have asymmetric regions as long as a, + a2 = cx

(for a, i = 1, 2) and ad, + ad2 = F (for Lld, i = 1, 2), where F is a function of al + a2 as

shown previously. The same statements of the decision rules will apply with the appropriate

2 2
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changes in the significance levels. In the symmetrical simultaneous tests, the maximum

probability of Type III error is a/2. On the other hand, in the asymmetric simultaneous tests,

it is equal to F/2, where a12 < F/2 < F < a (Shaffer, 1972). In the extreme asymmetric case,

if one of the a; in the test of Ho, is set to zero then the other is set to equal a. At the same

time, if one of the adi is set at zero then F is also equal to a. In other words, the within-

sample and between-sample tests are reduced to two independent one-tailed tests, each is

evaluated at a). Hence, the symmetric test has an advantage that it miniinizes the maximum

probability of a Type III error. However, it is not necessary and not always best to impose

symmetric critical regions since it may be more important to detect the effect of one sample,

or differences in one direction, than in the other (Kaiser, 1960, p. 166; Shaffer, 1972, p. 196).

For the three-choice hypothesis of HI: p1 p2 = 0, li2 : pi > p2 = 0, 113 : pl < p2, Hand,

McCarter, and Hand (1985) proposed a procedure for testing the directional two-tailed

hypothesis by just evaluating the 100(1 a)% confidence of pi p2 Their decision rules are:

"(a) if the signs of the two limits are different (zero is in the interval), then refuse to reach

any conclusion about the population difference, (b) if both signs are positive, then accept

and reject both Ho and 112 , and (c) if both signs are negative, then accept 112 and reject both

Ho and HI" (p. 495). Certainly, this decision rule can replace our rule (ii) since they imply the

same statistical outcomes. However, for a simultaneous evaluation of one-sample parameter

estimation and two-sample statistical inference, the need for comparable confidence intervals

and hence, our decision rule set of (i) and (ii) are well-grounded.

23
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Using Comparable Confidence Intervals for

Pre-planed Multiple Comparisons

General Framework

If there are few a priori contrasts to be tested, the simplest method is the use of

multiple t tests (Howell, 1997, p. 354). The procedure for simultaneous parameter estimation

and statistical inference developed above is applicable to testing linear contrasts of means,

proportions, and correlations under both conditions of variance homogeneity and

heterogeneity. However, there are three necessary modifications for this purpose. First, under

the assumption of variance homogeneity in an experiment of k independent groups, the pooled

variance (V) in computing the standard errors of the estimates (SE i = 1, 2, ..., k) is

replaced by the error mean square (MSE) obtained from the one-way ANOVA table for the

total sample. The formula for MSE is specified as

MSE =
(15) 1=1 1=1

(Marascuilo and Serlin, 1988, p. 433), where S2j is the ith sample variance. Secondly,

summary statistics of the specified contrasts must be computed in terms of weighted values.

For example, in testing Ho: 1.tA B = pc, the weighted mean and variance for the combined

group of A and B are

(16)

and,

MAB = (1AMA noMB)/(ko 2)

24
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s'AB = [CriA 1)S2A + ( riB 1)S2B1/(N_AB - 2)

where NAB = + LIB; MA and MB represent the sample means, and S2A and S2B, the sample

variances, of the two groups A and B, respectively. Thirdly, since each contrast represents a

hypothesis to be tested using the same total sample, Student's t statistics are replaced by

Bonferroni-Dunn's t to control for the familywise error rate (Howell, 1997, p. 362-364;

Marascuilo and Serlin, 1988, Chapter 33). Several authors (e.g., Dayton and Schafer, 1973,

and Schafer, 1992) have recommended the universal use of the Bonferroni adjustment for

controlling familywise error rate in multiple comparisons as well as tests of correlations and

proportions because the procedure is simple and requires no restrictions on the nature of the

dependence of the tests. Moreover, comparing to other more difficult and restrictive methods,

the loss of the statistical power due to the Bonferroni adjustment is minimal.

Preplanned Multiple Comparison of Means

Suppose the population values for all group means and variances are unknown. A

researcher would like to test simultaneously h hypotheses, (11 < k), on the contrasts Eai,dgi = 0

= 1, 2, ..., h), where aj = 1, 1 or 0 (1 = 1, 2, ..., k) = the ith contrast weight such that EA

= 0, and E = the sum over k groups. Suppose the researcher is also interested in knowing the

range of pi = 1, ..., k). In other words, the researcher wishes to test the following

hypotheses:

(k within-sample tests): 1-jod: pj = go vs. I-1A J: pi po, 1 = 1, 2, ..., k; where po can be

any value of interest.

d( across-sample tests): j,d = 0 versus 1: EA,d1-ti,d 0, d =h Ho, : Ea: u 1, 2, ..., h, where

EA,dpj,d is the dth contrast involving rn group means with nonzero contrast coefficients.
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Each of the k within-sample tests is conducted the same way as discussed above for

the one-sample tests of means. Given that the groups are independent, there is no familywise

error rate to be protected. On the other hand, the procedure for the h across-sample tests is

not so simple. Let us first consider the case in which the assumption of variance homogeneity

is tenable across all k groups. The 100(1 a)% two-tailed confidence interval for the dth

contrast is expressed as

(18) lEA,441 + _ cd2h514,

for d = 1, 2, ..., h, where lx1= the absolute value of x, S_Ed = Al{MSEEC%,d2/A)}, N = ni +

+ 121, = the total sample size, f = N k = the degree of freedom of the t statistic, a/2h = the

familywise Type I error rate according to the Dunn-Bonferroni adjustment for h simultaneous

hypotheses, and MSE is given in Equation 15.

For each contrast in the h across-sample tests, there are rn within-sample tests, i(ri <

k), corresponding to the rn nonzero contrast coefficients among A, = 1, 2, ..., k. Suppose gi

= 1, ..., )1 is included in the specification of the dth contrast. The correction factor for

computing the comparable confidence interval for 1.1; is of the form

Ccd = SE /SE = 4[MSEE(ai,d2414)1/1'\ifS2i/A. 1,

where SE = 4{MSE(1.142/n, + + ak,d2/a)}, (k - in) coefficients of a. are zero, and SE, =

SI/N1111 + + 1/41Lik. Then the 100(1 a)% two-tailed comparable confidence interval for gi,d,

i = 1, ..., rn, is given by

(19) ± ts,
I

w2h5ri,
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where SE*, = cf, SE . The associated comparative significance level is computed as

= 2[1 If(cflf, - a/211)]

where If' (x) = Pr( c < = the probability of obtaining a value of x for the anh

distribution.

In applying the above procedure under variance heterogeneity, one need to modify the

degree of freedom for the t statistic. It is the solution for the equation r 1)[1

(yoL,)], where 4 A/5_2i and W = EI4 (according to the Welch-Aspin approximation. See

Marascuilo and Serlin, 1988, pp. 435-437). In evaluating the comparable confidence intervals

per contrast under both variance conditions, directional two-tailed hypotheses can be assessed

just as in the case of simple tests of means difference.

Example 5

In a certain study on the influence of professional training on attitudes toward persons

with disabilities, 71 subjects were randomly assigned into six experimental conditions ICIA =

11, EB = 12, pc = 10, RD = 14, a = 11, = 13), which were subsequently combined into four

treatment groups; with ni = EA + LIB, R2 = fic + ED, E3 = TIE and ri4 = EF. Responses on the

variable "Bias themes"(X) were measured (e.g., as defined in Kemp and Mallinckrodt, 1996).

Before data collection, the researcher was interested in testing four contrasts: PI vs. 112, [tI vs.

113, [t, vs. g4, and 1.13 vs. [t4. The mean square error (MSE) for X computed for the four groups

is found to be 0.459. The assumption of variance homogeneity is tenable for the four

contrasts (p > .26, p > .47, p > .19 and p > .25, respectively) according to a test of variance

homogeneity (Hinkle, Wiersma & Jurs, 1994, pp. 242-244; Ferguson & Takane, 1989, pp.

202-204). The results of the procedure for testing these contrasts are summarized in Table 3.

2 7
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Insert Table 3 about here

In Panel 1 of Table 3, the sample means and standard deviations are computed

according to Equations 16 and 17, respectively. The conventional t tests, with degrees of

freedom f = n 1 (j. = 1, 2, 3, 4) and the 100(1 - a)% two-tailed conventional confidence-J

intervals are computed with the critical values of W2, where a = .05. All of these

individual confidence intervals overlap to each other.

In Panel 2, the t tests of means difference are conducted with degrees of freedom fd =

N - k = 71 4 = 67, and evaluated at a* = a/h = .05/4 = .0125 (two-tailed). The critical value

of the test statistic according to the Bonferroni-Dunn approximation is tn, .05m = 2.567 (two-

tailed) (obtained by extrapolation from Table 1, Appendix t', Howell, 1997, p. 687; or by the

command TINV(.012512, 67) in the SAS computer program). For a numerical illustration, let

us consider the evaluation of the third contrast, G1 vs. G4. The contrast coefficients are

specified as al = 1, A2 = 0, = 0, and a_4 = -1. Hence, upon diving the contrast mean

(EA, M-43 = 1.54 - 1.74 = .20) by its standard error (SEd3 = IMSEEal,d32/A =

41.0438[(1)2/23 + (-1)2/13))) = .0726, one obtains the test statistic Id3 = .20/.0726 = 2.711.

The corresponding 95% confidence interval according to Dunn-Bonferoni approximation for

the contrast is equal to

CI 3 I EA 4 M.43 + anha_dE 3 = I -2.71 I + (2.567)(.0726) = (-.383, -.010),

implying that the third contrast is statistically significant at a = .05 (two-tailed). Since $E =

141S2/a = 41(0.23)2/23 + (0.20)2/24 + (0.22)2/11 + (0.18)2/13) = .104, the correction factor

is given by

28
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c d3 SE /SE 0726/ 104 698--f,

For the individual standard errors of SE1 = 0.231-V23 = .048 and SE, = 0.18/413 = .050, their

corrected values are S5143 = cf,d3SEI = (.698)(.048) = .033 and SE% d3 = Ccd3H4 = (.698)(.050)

= .035. Hence, in Panel 3, the 95% comparable confidence intervals for 1.11 and [14 in the third

contrast are

Cr 143: M1 + t.=7I, 1 antiK*143 = 1.54 + (2.567)(.033) = (1.46, 1.63),

and

Cr443: M4 + If=71,1- anhaE*443 = 1.74 + (2.567)(.035) = (1.65, 1.83),

respectively. As expected, the two comparable confidence intervals are separable. Moreover,

at the risk of Type III error less than a*/2 =.0125, one can assume that [II <114. The

corresponding comparative Type I error rate is

a' = 2[1 1.671.698(2.567)}] = 2[1 .961] = .078,

implying that the 92.2% conventional confidence intervals for the means pl and [t4 are

separable.

Comments

The above method is applicable to a-priori multiple comparisons of contrasts with

different weights and symmetric critical regions. Extensions to the asymmetric critical regions

are being studied. However, tables for Dunn-Bonferroni adjustment for t tests with unequal

allocation of Type I error rates are available (Dayton and Schaffer, 1973).

2 9
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Discussions and Conclusions

The paper has begun with a discussion on the logic and motivation for undertaking a

study of comparable confidence intervals for two-sample means tests. The proposed

procedures were then generalized in terms of parameter type, variance conditions and tailed

error allocation for critical regions. Procedures for nondirectional and directional two-tailed

tests for a simultaneous evaluation of within-sample parameter estimation and across-sample

tests of parameter discrepancy for pre-planned simple and multiple comparisons were studied.

It was suggested that for such a simultaneous evaluation, one need only to compute and

analyze the comparable confidence intervals per parameter pair. Thus if the comparable

confidence intervals are separable, one can assume that the pair of parameter estimates are

statistically significant, proceeds to determine the confidence limits for such a difference to

happen and makes prediction on the direction of the parameter difference with the risk of

getting the direction wrong less than half the nominal significance level (with Dunn-

Bonferroni adjustment in the case of multiple comparisons).

Researchers sometimes attempt to cover all bases by conducting a significance test

and, when results are significant, calculating a confidence interval to estimate the parameter

range. Unfortunately, making the decision to estimate parameter size contingent on the

outcome of the significance test produces a biased estimate of the parameter (Schmidt, 1992)

and loss of statistical power (Bancroft, 1944, Bennett, 1952). It is important to emphasize that

the proposed procedures are developed for a-priori pairwise or multiple comparisons.

Therefore, neither the construction nor the statistical power of comparable confidence

intervals are influenced by the knowledge of the significance test outcomes. Because of these
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concerns, comparable confidence intervals are not recommended for post-hoc pairwise

comparisons.

A question of interest is how the power of comparable confidence intervals can be

determined. The within-sample tests for 4) and the across-sample tests for 0, i = 1,

2, ..., k, (ls > 2), may have different statistical powers. Depending on the disparity in sample

sizes and variances as well as the magnitude of 4)0, the within-sample tests could be less (or

more) powerful than the across-sample tests for the same parameter pair. For example, in

two-sample studies, if both 11), and 4)2 are small but substantially different and 00 is set at

zero, it is likely that the between-sample test will lead to the rejection of the null hypothesis

when it is false more often than the between-sample tests will at the same a level. However,

the difference in power of within-sample and between-sample tests does not influence the

separability of comparable confidence intervals. Conceptually, as far as the decisions on

parameter discrepancy (or separability) and predicted direction of the disparity, the powers of

comparable confidence intervals are akin to the powers of the across-sample tests.

As another point of clarification, in the procedures of a single pairwise comparison for

two-sample studies, the pre-determined a level in the simultaneous evaluation of the within-

sample and between-sample tests by two comparable confidence intervals does not require

any adjustment of the type required for familywise error rate. Under each of the within-

sample and between-sample tests in the proposed procedures, the chosen a represents the

error rate per comparison (Howell, 1997, p. 349). When the two comparable confidence

intervals are evaluated, a becomes the error rate per experiment (Howell, 1997, p. 349) for an

experiment in which only one test has been conducted, namely the between-sample test. Of

course, the adjustment for controlling familywise error rate is needed in a-priori multiple
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comparisons.

For most practical research settings, it is believed that the proposed methods are both

effective and meaningful. Instead of conducting three significance tests (&,, i = 1, 2 and lid ) ,

only two comparable confidence intervals are required. The saving can be more substantial

with respect to a simultaneous testing of individual hypotheses and multiple comparisons.

With regards to the interpretation issue, one may question about the appropriateness of using

interval separability to make decisions on statistical significance. We recognize that the

separability of two comparable confidence intervals and the statistical significance of a test

for parameter discrepancy may have different meanings to researchers. However, confidence

intervals posses the same mathematical properties of significance tests, and more. A

confidence coefficient represents the probability of producing an interval containing the true

value of the parameter of interest. One declaring that the two confidence intervals are

disjointed, with specified confidence coefficient and interval bounds, when the influence of

variations in sample size and sample variances have been accounted for, conveys a clearer

message about the magnitude and nature of difference for the two sample estimates than

saying that their difference is "significant". This is because the probability that the test

statistic would take a value as extreme or more extreme than actually observed is smaller than

a/2 does not depict the whole picture of the difference. The confidence widths actually

estimate the relative sizes of the individual effects. The measure of separability (or

overlapping) of the two comparable confidence intervals indicates the size of their

discrepancy (or similarity) or an estimate of the effect size of the difference scores.

Comparing to the conventional confidence intervals, the proposed method yields

confidence intervals with narrower widths, overlapping bounds for insignificant means

32
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differences and separable limits for statistically significant results. These properties are

confirmed in the examples under consideration. The proposed procedure is particularly useful

whenever it is meaningful to evaluate confidence intervals for both parameter estimation and

hypothesis testing. For example, in the calibration of IQ scores, psychometricians may want

to determine the score range of IQ groups such that the means difference between any pair of

adjacent groups will be statistically significant. Psychiatrists are also interested in testing the

difference of Verbal IQ score (VIQ) against Performance IQ score (PIQ) as well as the

individual ranges of VIQ and PIQ that the potential patients may belong to. As another area

of potential application, studies for decision-making purposes generally require both statistical

estimation and statistical inference, as opposed to exploratory studies which are mainly based

on hypothesis testing for explanation purposes. For example, in clinical research, explanatory

trials are conducted to determine whether a difference in treatments exists at all whereas the

more sophisticated management trials is aimed at not only comparing treatment means but

also deciding which treatment are better or should be used (Willan, 1994).

Cox and Hinkley (1974) considered interval estimation as "the central problem of

statistical inference" and Cox (1977) concluded "that therefore estimation, at least roughly, of

the magnitude of effects is in general essential regardless of whether statistically significant

departure from the null hypothesis is achieved" (p.70). Tukey (1991) discussed four

compelling reasons about the importance of confidence intervals and maintained, "It should be

clear (a) that confidence intervals are irreplaceable and (b) why they are needed" (p. 102).

The proposed methods serves to illustrate, and advance, the utility of the confidence interval

approach in supporting these arguments.
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Footnotes

Researchers believing that the magnitude of effect size to be irrelevant as long as the

effect is either statistically or practically important may not be interested in the comparison of

confidence interval widths (Parker, 1995; Prentice and Miller, 1992). However, our concern is

on the waste of one-sample information if one only conducts the evaluation of the difference

scores.

2 The preference for confidence intervals has been echoed through diverse disciplines

(e.g., in the behavioral sciences by Carver, 1978, 1993; Cohen, 1994; La Forge, 1967;

Schmidt, 1996; Serlin, 1993 and Shaffer, 1995; engineering by Hahn, 1974; Hahn and

Meeker, 1991; Hsu, 1996; and Natrella, 1960; and medical studies by Borenstein, 1994;

Gardner and Altman, 1986; Langman, 1986; Poole, 1987; Rothman, 1978, 1986; and

Thompson, 1987. In fact, this list is severely incomplete). See also the comments on Cohen

(1994) by Baril and Cannon (1995), Cohen (1995), Frick (1995), Hubbard (1995), McGraw

(1995), Parker (1995), and Svyantek and Ekeberg (1995). For a critical view on the role of

confidence intervals in hypothesis testing, see Cortina and Dunlap (1997).

3 A full treatment of using confidence intervals for multiple comparisons is found in

Hsu (1996).

4 For the test of H d, the test statistic is equal to 2.1126, corresponding to a p-value of

oc = 2*(1 - (1)(2.1126)) = .0346 and the corresponding significant confidence interval is CI =

(0, 1 1).

5 If the test statistic for a conventional two-tailed hypothesis is not significant at oc/2

then the Type III error for the corresponding two-tailed directional test is zero or undefined,

34
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and if the test statistic is significant at a/2, as the parameter discrepancy (5), and power of

the test, decreases to zero, the Type III error increases to its maximum value of a12. On the

contrary, the Type III error becomes infinitesimal as power increases to 1
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Table 1

Correction Factors in Computing Confidence Intervals for Two-sample Tests of Means (0),

Proportions (n) and Correlation Coefficients (p)

Case Null
Hypothesis

Sampling Distribution
Distribution' Conditions

la

lb

lc

ld

2

Ho: P2 = 0

Ho: PI P2 = 0

H0: 1.1, - P2 = 0

Ho: pl p2 = 0

1-10: 1C1 - TC2 = 0

3 Ho: PI P2 = 0

02, 022

iLpi

CT21 = 0.22

621 # 622

> 5

12(1 > 5

Ef =

=

Correction
Factor

4{1 + rn}

1 + 4m

4{u + ml

41u + 4m

A/{(1 + rn)(1 +gy)}

{1 + gj(m + 42/)

-1{v + rn}

+ 4m

41s2'+ ms2'}

qs2, + 4{ms2.1

4{(Lii+3) + (n2+3)}

+4012 + 3}

Note. rn = 112/n,, u = o-22/(52,, = S22/S21, f = f, + f2, f, = 1 for i = 1, 2, f' = [(E2/f,) + ((1

S21/nig, and g.= (S21/n1) + (S22/E2), S2'= {f(l 2:)}, = (Ea + ri7P,)/N, and N = n, + a,.

Sampling distribution of the test statistics.
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Table 2

Confidence Coefficients of Conventional and Comparable Confidence Intervals Corresponding

to Selected Values of Type I Error and Correction Factor

a CI* 0.70 0.71 0.72

Panel 1. Z tests

Correction factor

0.73 0.74 0.75

(cf)

0.76 0.77 0.78 0.79 0.80

.0001 .999 3.891 0.994 0.994 0.995 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998

.01 .99 2.576 0.929 0.933 0.936 0.940 0.943 0.947 0.950 0.953 0.955 0.958 0.961

.05 .95 1.960 0.830 0.836 0.842 0.848 0.853 0.858 0.864 0.869 0.874 0.878 0.883

.10 .90 1.645 0.750 0.757 0.764 0.770 0.776 0.783 0.789 0.795 0.801 0.806 0.812

.20 .80 1.282 0.630 0.637 0.644 0.651 0.657 0.664 0.670 0.676 0.685 0.689 0.695

a CI. f 0.70 0.71 0.72

Panel 2. t Tests

Correction factor

0.73 0.74 0.75

(ce)

0.76 0.77 0.78 0.79 0.80

.01 .99 10 3.169 0.949 0.952 0.955 0.957 0.959 0.961 0.963 0.965 0.967 0.969 0.970
20 2.845 0.940 0.943 0.946 0.949 0.952 0.955 0.957 0.960 0.962 0.964 0.966
40 2.704 0.934 0.938 0.941 0.945 0.948 0.951 0.954 0.956 0.959 0.962 0.963
80 2.639 0.932 0.935 0.939 0.942 0.946 0.949 0.952 0.955 0.957 0.960 0.962

160 2.607 0.930 0.934 0.938 0.941 0.944 0.948 0.951 0.954 0.956 0.959 0.962

.05 .95 10 2.228 0.850 0.855 0.860 0.865 0.870 0.874 0.879 0.883 0.887 0.891 0.895
20 2.086 0.840 0.846 0.851 0.857 0.862 0.867 0.871 0.876 0.881 0.885 0.889
40 2.021 0.835 0.841 0.847 0.852 0.857 0.863 0.868 0.872 0.877 0.882 0.886
80 1.991 0.833 0.838 0.844 0.850 0.855 0.861 0.866 0.871 0.875 0.880 0.885

160 1.975 0.832 0.837 0.843 0.849 0.854 0.859 0.865 0.870 0.875 0.879 0.884

.10 .90 10 1.812 0.767 0.773 0.779 0.785 0.790 0.796 0.802 0.807 0.812 0.817 0.822
20 1.725 0.759 0.765 0.771 0.777 0.784 0.789 0.795 0.801 0.806 0.812 0.817
40 1.684 0.755 0.762 0.768 0.774 0.780 0.786 0.792 0.798 0.803 0.809 0.814
80 1.664 0.752 0.759 0.766 0.772 0.778 0.785 0.790 0.796 0.802 0.808 0.813

160 1.654 0.751 0.758 0.765 0.771 0.777 0.784 0.790 0.795 0.801 0.807 0.812

.20 .80 10 1.372 0.641 0.647 0.654 0.660 0.666 0.672 0.678 0.684 0.690 0.696 0.702
20 1.325 0.635 0.642 0.649 0.655 0.662 0.668 0.674 0.680 0.686 0.692 0.698
40 1.303 0.633 0.640 0.646 0.653 0.659 0.666 0.672 0.678 0.684 0.691 0.697
80 1.292 0.632 0.638 0.645 0.652 0.658 0.665 0.671 0.677 0.683 0.690 0.696

160 1.287 0.631 0.638 0.644 0.651 0.658 0.664 0.670 0.677 0.683 0.689 0.695

Note. a = Nominal Type I error, CI* = Confidence coefficient of the comparable confidence

interval, zp = Critical value of the Z statistic for two-tail test at a level, t4, = Critical value

of the t statistic of degree of freedom f for two-tail test at a level under the assumption of

variance homogeneity, and f = n - 1 = degree of freedom for t tests.
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Appendix

DERIVATION OF THE FORMULAS IN TABLE 1

For each procedure listed below, the formulas related to two-tailed tests under

unbalanced designs (11, # nj, i # j = 1, ..., js) are given for the following substeps: (i)

confidence interval for the difference scores (Qd); (ii) one-sample comparable confidence

intervals (CI*); and (iii) comparative Type I error (a'). For one-tailed tests, replace a/2 by a

and a' by a'/2 in the formulas. Based on theses results, formulas under balanced designs are

trivial. Some of the notations that will be used repeatedly are: m = u a22/0.20

s22/s2i, f r + f2, = n 1 for i = 1, 2, 4:1(3) and Id f(2c) represent the cumulative distribution

functions (CDF) of standard normal, and t with degrees of freedom df, respectively, evaluated

at x.

Case 1. Simple Comparisons of Means

la. Variance homogeneity (al = a, = a, known)

(i) Qd: (M1 - M2) + Z1_ anSEd, where SEd = crlan, + n2 )/n1n21.

(ii) M + Z1 a/2SE%, where SE*, = cAE, SE = i = 1, 2, and

= \Ifni + n21/(4n, + Aln1) = -\1{ 1 + rn} [1 +

(iii) a' = 2[1 - (1)(4{c(Z1_ w2})1.

lb. Variance heterogeneity (a, # a2, known)

(i) ( M2) + Z1 ,25Ed, where SEd = 4{(a21/n1) +(a21/1)).
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(ii) CI*;: M + Z1_ cu2SE*;, where SE*; = sSE., SE. = i = 1, 2,

and s = (E2a2; + ners22}ROB2 + a24n1]-1 = { m + u} [4m +

(iii) = 2[1 013(4{sZ1.c,12})1 .

lc. Variance homogeneity (a, = (72 = a, unknown)

(i) (m, m2) + where s_E = a4{2/n}, f = f1 + f2 and fi = m 1,

i = 1, 2.

(ii) CI*;: M + w2SE*;, where SE*, = sSE., SE. = $ i = 1, 2, and

s = 4{0 + (1 +1.1)1[1 + grII/[4m + 4g] = 41(1 + E)O + gyil[4{1 + g}(4rn + 4x)].'

where g = f2/fl.

(HD = 2[1 le(4{csIs,

ld. Variance heterogeneity (al a2, unknown)

(i) al: (m1 - M2) + If*,1 w25...Ed, where ad = 41(12/111) (522/12.2)}, and

cam12 + sm22)2

r = = + (1 w2)11-,,
(am 12)2 (.m22)2

n 11

(Satterwaite, 1946; Welch, 1938), where 52 = S2/n., i = 1, 2, w = S21/n1q and g = CS.21/n1) +

(Y2/11.2).

4
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(ii) M + - an SE*i, where SE*; = ErSE, = him/ + Alf 1 wIr`. Since w =

m/ + Li), the correction factor can be written as E f = 4{rn + v}[4m

i11) = 2[1 If*(41.9.1,1 -

Case 2. Simple Comparisons of Proportions

In testing the null hypothesis: H0,1: 7E1 = no, the application of the following procedure

requires that Ra > 5 and n (1 > 5 = 1, 2), where Iti and pj are the population and

sample proportions of the ith population, respectively.

(ii) R2) + Z1_ anSE, where = S'4{N/n1R2}, S' = -\/[f(1

= (Ra + n,p2)/N, and N = n, + 112.

± Zi coSE*i, where SE* = RfSE, i = 1, 2, SE. = S/412, S, = -JIR(1 - 2)1,

and cs = S'41\1[5.14R2 + .5.24n111 qts2,+ m52,}[Js22 4{ms21}]-1.

(iv) a* = 2[1 cto(4-C1pZ1 -

Case 3. Simple Comparisons of Correlations

For statistical inference regarding p and pi, where p denotes the population correlation

coefficient, the following procedure requires the computation of Z the Fisher's Z

transformation of L, i = 1, 2, where L represents the sample Pearson correlation of the ith

population.

(al) a for Zpi: Z Zi anSE; = where SE = [41n1 + i = 1, 2; Z,,L



Comparable Confidence Intervals 46

and Z u are the lower and upper bounds of this confidence interval, respectively. They can be

converted into the raw score units of measurement as (L L,u): ([1 exp{-2Z J][l + exp{-

2Z a}-1, [1 - exp{-2z,1,u}][l -F

(i) The 100(1 a)% two-tailed confidence interval for 41 - 42:

( Zr, Z2) + Zi_cd2SE4 = Z Zrd,u),

where SEd = + 3)-` + (1_21 + 3)11.

The 100(1 - a)% two-tailed confidence interval for p1 p2:

al: ([1 exp{ -24d,L )1[1 + exp{ -24d,L } ]', [1 exp{ -24dx, } ][ 1 + exp{ 2rd,U }1-1).

(ii) The 100(1 - cx)% two-tailed comparable confidence interval for 41 - 42:

CI*;: Z ; + Z1_ anSE*; = Z* ; u),

where SE*; = cfSE, i = 1, 2, and

+ n2 6}

\i{n1 3) +.q{1:12 3)

The 100(1 a)% two-tailed comparable confidence interval for pl p2:

CI*;: ([1 exp{-2ZLL}/[1 + exp{-2Z*IL}, [1 - exp{-2ZL0}]/[1 + expl-24t,1,u1])

(iii) a* = 2[1 (130(4_c_frZ1 co)).
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